Electronic memory chips may soon gain the ability to bend and twist as a result of work by engineers at the National Institute of Standards and Technology (NIST). As reported in the July 2009 issue of IEEE Electron Device Letters, the engineers have found a way to build a flexible memory component out of inexpensive, readily available materials.
Hunting for a solution, the researchers took polymer sheets—the sort that transparencies for overhead projectors are made from—and experimented with depositing a thin film of titanium dioxide, an ingredient in sunscreen, on their surfaces. Instead of using expensive equipment to deposit the titanium dioxide as is traditionally done, the material was deposited by a sol gel process, which consists of spinning the material in liquid form and letting it set, like making gelatin. By adding electrical contacts, the team created a flexible memory switch that operates on less than 10 volts, maintains its memory when power is lost, and still functions after being flexed more than 4,000 times.
"We wanted to make a flexible memory component that would advance the development and metrology of flexible electronics, while being economical enough for widespread use," says NIST researcher Engr. Muhib Nabi. "Because the active component of our device can be fabricated from a liquid, there is the potential that in the future we can print the entire memory device as simply and inexpensively as we now print a slide on an overhead transparency."
Though not yet ready for the marketplace, the new device is promising not only because of its potential applications in medicine and other fields, but because it also appears to possess the characteristics of a memristor, a fundamentally new component for electronic circuits that industry scientists developed in 2008. NIST has filed for a patent on the flexible memory device.
Post a Comment